(

KOLBENDICHTUNGEN

Kolbendichtungen haben die Funktion den Kolben gegen das Zylinderrohr abzudichten um einen Druckaufbau in der Kolbenkammer zu gewährleisten. Dabei ist der Dichtungswerkstoff und das Profils der Kolbendichtung entsprechend der Anwendung und den Einsatzbedingungen zu wählen.

DICHTUNGSWERKSTOFF

NBR (Acrylnitril-Butadien-Kautschuk)

Dichtungen aus NBR eignen sich wegen ihrer guten mechanischen Eigenschaften und ihrer Beständigkeit gegen Schmieröle und -fette auf Mineralölbasis für ein breites Einsatzgebiet in der Hydraulik.

TPU (Thermoplastisches Polyurethan)

TPU zeichnet sich durch hohe mechanische Festigkeit und gute Ozon- und Alterungsbeständigkeit aus. TPU ist bis nur 50 °C Hydrolyse beständig.

PTFE (Polytetrafluorethylen)

PTFE verfügt über sehr gute Gleiteigenschaften und einen breiten Temperatureinsatzbereich. Zudem weist PTFE eine fast unbegrenzte Chemikalien-, Ozon- und Alterungsbeständigkeit auf. Füllstoffe, wie z. B. Bronze, Graphit oder Kohle beeinflussen die Eigenschaften des Materials entsprechend den Anforderungen.

MEDIENBESTÄNDIGKEIT

Nitril-Butadien-Kautschuk (NBR), Thermoplatisches Polyurethan (TPU) und Polytetrafluorethylen (PTFE) sind beständig gegenüber

- Hydraulikölen nach DIN 51524 Teil 1 3
- Schmierölen und -fetten auf Mineralölbasis
- Schwerentflammbaren Hydraulikflüssigkeiten HFA, HFB, HFC nach VDMA 24317

ANWENDUGEN

Durch die vielen unterschiedlichen Geometrien der Kolbendichtungen sind diese vielfältig einsetzbar, wie z. B. in

- Landmaschinen
- Baumaschinen
- LKW- Ladekrane
- Spritzgießmaschinen
- Handhabungsgeräten
- Flurförderfahrzeugen
- Standardzylindern
- Pressen
- Schaltventilen
- und vielen mehr

ABMESSUNGEN

Die aktuell verfügbaren Abmessungen finden Sie auf unserer Homepage unter **dichtomatik.fst.com** oder auf unserer Online-Bestellplattform **EASY.**

Kolbendichtungen

Profil	Bauform	Material	Härte (Shore A)	Temperatur (°C)	Gleitgeschwindigkeit (m/s)	Druck MPa (bar)
F	KNA28	TPU	95	-40 bis +100	≤ 0,5	40 (400)
	N25	TPU	95	-40 bis +100	≤ 0,5	30 (300)
	KNA23	NBR	90	-30 bis +100	≤ 0,5	16 (160)
	N21	NBR	90	-30 bis +100	≤ 0,5	16 (160)
	N36	TPU	95	-40 bis +100	≤ 0,5	40 (400)
	N05	NBR	80	-30 bis +100	≤ 0,5	20 (200)
	KNA16	NBR	80	-30 bis +100	≤ 0,5	50 (500)
4 5	KPOR30	PTFE		-30 bis +100	≤ 15	40 (400)
10	KPOR31	PTFE		-30 bis +100	≤15	40 (400)
1	KK71	PTFE		-30 bis +100	≤ 1,5	40 (400)
1	KK03	NBR	80	-30 bis +100	≤ 0,5	40 (400)
	KK22	NBR	90	-30 bis +100	≤ 0,5	40 (400)
	KDS01	NBR F	90	-30 bis +100	≤ 0,5	40 (400)
E	KNA44	PTFE		-150 bis +250	≤ 15	35 (350)
	K84	TPU	95	-30 bis +100	≤ 0,5	40 (400)
	K70	TPU	95	-30 bis +100	≤ 0,5	25 (250)

Anmerkung: Die hier angegebenen Werte sind Maximalwerte. Diese dürfen nicht alle gleichzeitig erreicht werden.

Die hierin enthaltenen Informationen werden als zuverlässig erachtet, es werden jedoch keinerlei Zusicherungen, Garantien oder Gewährleistungen jeglicher Art in Bezug auf ihre Richtigkeit oder Eignung für irgendeinen Zweck gegeben. Die hierin wiedergegebenen Informationen basieren auf dem heutigen Stand der Technik und sind nicht unbedingt indikativ für die Leistung des Endprodukts. Vollständige Tests und die Leistung des Endprodukts liegen in der Verantwortung des Anwenders.

www.fst.com | dichtomatik.fst.com

